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Nonextensive entropies derived from form invariance of pseudoadditivity
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The form invariance of pseudoadditivity is shown to determine the structure of nonextensive entropies.
Nonextensive entropy is defined as the appropriate expectation value of nonextensive information content,
similar to the definition of Shannon entropy. Information content in a nonextensive system is obtained uniquely
from generalized axioms by replacing the usual additivity with pseudoadditivity. The satisfaction of the form
invariance of the pseudoadditivity of nonextensive entropy and its information content is found to require the
normalization of nonextensive entropies. The proposed principle requires the same normalization as that
derived previously@A.K. Rajagopal and S. Abe, Phys. Rev. Lett.83, 1711~1999!#, but is simpler and estab-
lishes a basis for the systematic definition of various entropies in nonextensive systems.
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I. INTRODUCTION

Since the first proposal of nonextensive entropy by Tsa
@1,2#, there have been many successful studies and app
tions analyzing physical systems such as long-range inte
tions, long-time memories, and multifractal structures in
nonextensively generalized Boltzmann-Gibbs statistical m
chanics@3#. In the rapid progress in this field, some modi
cations have been made to mathematical formulations in
generalized statistical mechanics in order to maintain
physical consistency. One of the most important modifi
tions was the introduction of an appropriate definition of t
generalized expectation value. This modification has alre
appeared in the literature@4#, but has been applied as a ca
didate for satisfying the physical requirements in a giv
situation without a systematic framework. The necessity
apply such modifications invites the establishment of guid
principles that will provide a clear basis for proposed gen
alizations of Boltzmann-Gibbs statistical mechanics. In a
cent paper@5#, Rajagopal and Abe presented a principle
determining the structure of nonextensive entropies. Th
principle was the form invariance of the Kullback-Leibl
entropy when generalized to nonextensive situations.

In the present paper, a much simpler principle for de
mining the structure of nonextensive entropies is presen
The original Tsallis entropy is determined for the given a
propriate axioms@6–8#. In contrast to these axiomatic ap
proaches, we define nonextensive entropy in another wa
terms of the appropriate expectation value of nonexten
information content similar to the definition for Shannon e
tropy @9#. This definition has already been applied to t
generalization of the Shannon source coding theorem u
thenormalized q-expectation valueof nonextensive informa
tion content@10#. Nonextensive information contentI q(p) is
defined byI q(p)52 lnq p in Ref. @10# as an intuitively natu-
ral generalization of the standard information contentI 1(p)
52 ln p ~referred to asself-informationor self-entropyin
Shannon information theory@9#!, where lnq x is aq-logarithm
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function defined by lnq x[(x12q21)/(12q). However, in Ref.
@10#, the form invariance presented in this paper was
mentioned. We introduce the axioms for nonextensive inf
mation contentI q(p) as a slight generalization of that for th
standard information content, and obtainI q(p) uniquely
from the generalized axioms. The requirement of form
variance of pseudoadditivity when we define nonextens
entropySq(p) as the appropriate expectation value ofI q(p),

Sq~p![Eq,p@ I q~pi !#, ~1!

leads to the determination of the structure of the nonext
sive entropy, whereEq,p@•# is the expectation value satisfy
ing the following form invariance of the pseudoadditivity:

I q~p1p2!

k
5

I q~p1!

k
1

I q~p2!

k
1w~q!

I q~p1!

k

I q~p2!

k
~2!

and

Sq~pAB!

k
5

Sq~pA!

k
1

Sq~pB!

k
1w~q!

Sq~pA!

k

Sq~pB!

k
,

~3!

wherek is a positive constant.w(q) is any function of the
nonextensivity parameterq and satisfies the conditions~7!
given below.

Note that information content means the amount of inf
mation provided by a result of an observation in a physi
sense. The standard information contentI 1(p)52 ln p has
been calledsurpriseby Watanabe@11#, andunexpectednes
by Barlow @12#.

II. NONEXTENSIVE INFORMATION-CONTENT

The axioms of standard information contentI 1 : @0,1#
→R1 satisfyingI 1(1)50 are given as follows@9#. @S1# I 1 is
differentiable with respect to anypP(0,1), @S2# I 1(p1p2)
5I 1(p1)1I 1(p2) for any p1 ,p2P@0,1#. Axiom @S2# means
that the information content for two stochastically indepe
dent events is given by the sum of the two sets of inform
tion.
©2002 The American Physical Society18-1
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For the above axioms,I 1(p) is determined uniquely by

I 1~p!52k ln p, ~4!

wherek is a positive constant@9#.
The above axioms are generalized in nonextensive si

tions as follows. Nonextensive information conte
I q : @0,1#→R1 for any fixedqPR1, satisfying

lim
q→1

I q~p!5I 1~p!52k ln p, ~5!

should have the following properties:@T1# I q is differentiable
with respect to anypP(0,1) andqPR1, @T2# I q(p) is con-
vex with respect topP@0,1# for any fixedqPR1, and@T3#
there exists a functionw: R→R such that

I q~p1p2!

k
5

I q~p1!

k
1

I q~p2!

k
1w~q!

I q~p1!

k

I q~p2!

k
~6!

for any p1 ,p2P@0,1#, wherew(q) is differentiable with re-
spect to anyqPR1,

lim
q→1

dw~q!

dq
Þ0, lim

q→1
w~q!5w~1!50, w~q!Þ0 ~qÞ1!.

~7!

Equation~6! is calledpseudoadditivityin many studies@3#
as a special form ofcomposability@13,14#.

Note that in these generalized axioms,@T2# is needed to
maintain non-negativity of the Kullback-Leibler entropy fo
any qPR1 when generalized to nonextensive situatio
@15,16#. In general, Kullback-Leibler entropyK(pAipB) is
defined by the appropriate expectation value of the differe
between two information contents@9#,

K~pAipB![EpA@ I ~pi
B!2I ~pi

A!#. ~8!

Therefore, the non-negativity of the Kullback-Leibler e
tropy leads to Gibbs inequality@17,18#,

K~pAipB!>0 ⇔ S~pA!5EpA@ I ~pi
A!#<EpA@ I ~pi

B!#.
~9!

When Ep is a normalized expectation value~i.e., Ep@1#
51) and pB5(1/W, . . . ,1/W), the right-hand side
EpA@ I (pi

B)# of the above Gibbs inequality is equal to th
maximum entropy,

EpAF I S 1

WD G5I S 1

WD5E1/WF I S 1

WD G5SS 1

W
, . . . ,

1

WD .

~10!

This inequality coincides with the maximality condition th
is one of the Shannon-Khinchin axioms@19,20#, that is, the
simplest form of the maximum entropy principle witho
constraints. Therefore, the satisfaction of the non-negati
of the Kullback-Leibler entropy for anyqPR1 is needed
when generalized to nonextensive systems. In order to sa
the requirement of the non-negativity, the information co
tent I q(p) should be convex with respect topP@0,1# for any
06611
a-
t

s

e

ty

fy
-

fixed qPR1 and its corresponding appropriate expectat
value should be applied. Such examples of expectation v
areq-expectation valueandnormalized q-expectation value
@2,4#. Under these two conditions~convex information con-
tent and appropriate expectation value!, the non-negativity of
the nonextensive Kullback-Leibler can be proved. The pr
is given in Appendix A.

Using the axioms @T1#–@T3#, we determine I q(p)
uniquely in the following procedures. Using Eq.~6!, for any
11DP(0,1), we have

I q@p~11D!#

k
5

I q~p1Dp!

k

5
I q~p!

k
1

I q~11D!

k
1w~q!

I q~p!

k

I q~11D!

k
.

~11!

This can be rewritten as

I q~p1Dp!2I q~p!

Dp
5

1

k

I q~11D!

D

k1w~q!I q~p!

p
. ~12!

Taking the limitD→0 on both sides of Eq.~12!, we obtain

dIq~p!

dp
5

b

k

k1w~q!I q~p!

p
, ~13!

whereb[ limD→02@ I q(11D)/D# and the first axiom@T1# is
applied. The differential equation is given by

1

k1w~q!y
dy5

b

k

1

x
dx, ~14!

wherex[p and y[I q(p). This can be solved analytically
the rigorous solution is

y5k
~Cxb!w(q)/k21

w~q!
, that is, I q~p!5k

~Cpb!w(q)/k21

w~q!
,

~15!

where C is a constant. Then, from the initial conditio
limq→1 I q(p)5I 1(p)52k ln p, we have thatC51 and b
52k, where conditions~7! are applied. Thus, the nonexten
sive information content I q(p) is derived as I q(p)
5k@(p2w(q)21)/w(q)#.

Moreover, by@T2#, the second differential ofI q(p) with
respect top should be non-negative for any fixedqPR1.
Thus, we can derive a constraintw(q)11>0 for any q
PR1.

Summarizing these results, the nonextensive informa
contentI q(p) obtained from the axioms@T1#–@T3# is

I q~p!5k
p2w(q)21

w~q!
, ~16!

wherek is a positive constant and

w~q!11>0 for any qPR1. ~17!
8-2
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For example,w(q)5q21 implies I q(p)52k lnq p.
Note that there have already been remarks on the alte

tive candidates for nonextensive information content to
fine the original Tsallis entropy@3#. They are

I q
(1)~p![2k lnq p and I q

(2)~p![k lnq p21, ~18!

and they only coincide forq51.

Sq
org~p![k

12(
i 51

W

pi
q

q21
5(

i 51

W

pi
qI q

(1)~pi !5(
i 51

W

piI q
(2)~pi !,

~19!

I q
(1)(p) and I q

(2)(p) correspond to w (1)(q)[q21 and
w (2)(q)[12q as w(q) in Eq. ~16!, respectively. However
the latter casew (2)(q)512q doesnot satisfy the identity
~17! for any qPR1, that is, I q

(2)(p) doesnot possess the
property ofconvexity@T2#. Therefore,I q

(2)(p) cannotbe in-
formation content. Even ifI q

(2)(p) is applied as information
content, then the non-negativity property of the nonextens
Kullback-Leibler entropy isnot held for anyqPR1 for lack
of the convexity ofI q

(2)(p), as stated above. The convexity
information content is applied to Jensen’s inequality in or
to prove the non-negativity of the nonextensive Kullbac
Leibler entropy. See Appendix A for the details.

In case ofw(q)5q21 andk51, the pseudoadditivity~6!
of I q(p) is remarkably similar to the relation of the Jacks
basic number inq-deformation theory@21,22# as follows. Let
@X#q be the Jackson basic number of a physical quantityX,
that is,@X#q[(qX21)/(q21). Then the Jackson basic num
ber of X1Y satisfies the identity@X1Y#q5@X#q1@Y#q
1(q21)@X#q@Y#q . The surprising similarity to pseudoadd
tivity ~6! can be seen if we consider a quantityf (x)
5p2(x21). Clearly, f (1)51. Standard information conten
I 1(p) is expressed asI 1(p)5d f (x)/dxux51; nonextensive
information content is given by I q(p)5Dqf (x)ux51
[@ f (qx)2 f (x)#/(qx2x)ux51, whereDq is the Jackson dif-
ferential. According toq-deformation theory, the propert
limq→1 I q(p)5I 1(p) originates from the convergenc
limq→1 Dq5d/dx.

III. EFFECTS OF RENORMALIZATION
OF NONEXTENSIVE ENTROPIES

The normalized nonextensive entropies follow natura
from the form invariance between entropy and its inform
tion content. In this section we assumek51 for simplicity.

Similar to Shannon entropy, nonextensive entropySq(p)
is defined as the expectation value of the information con
I q(p) obtained in Eq.~16!. For example, the nonextensiv
entropy Sq

org using the unnormalized expectation val
Eq,p

org@•# is given by

Sq
org~p!5Eq,p

org@ I q~p!#[(
i 51

W

pi
qI q~pi !, ~20!
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whereW is the total number of microscopic configuration
with probabilities$pi%. In the definition ofEq,p

org in Eq. ~20!,
the q-expectation value@2,4# is used. If we letw(q)5q21,
thenSq

org(p) is concretely derived from Eqs.~16! and~20! as
follows:

Sq
org~p!5

12(
i 51

W

pi
q

q21
. ~21!

This is the original Tsallis entropy@1#.
Let A andB be two independent systems in the sense t

the probabilitiespi j
AB of the total systemA1B factorize into

those ofA and ofB, i.e.,

pi j
AB5pi

Apj
B for any i 51, . . . ,WA and j 51, . . . ,WB .

~22!

The nonextensive entropySq
org(pAB) of the total systemA

1B can then be expanded using definitions~20! and~22! as
follows:

Sq
org~pAB!5Eq,p

org@ I q~pAB!#

5(
i 51

WA

(
j 51

WB

~pi j
AB!qI q~pi j

AB!

5(
i 51

WA

(
j 51

WB

~pi
Apj

B!qI q~pi
Apj

B!. ~23!

Applying the pseudoadditivity~6! for information content
I q(p), we obtain

Sq
org~pAB!5(

i 51

WA

(
j 51

WB

~pi
Apj

B!q$I q~pi
A!1I q~pj

B!

1w~q!I q~pi
A!I q~pj

B!%

5S (
j 51

WB

~pj
B!qDS~pA!1S (

i 51

WA

~pi
A!qDS~pB!

1w~q!S~pA!S~pB!, ~24!

where we used

Sorg~pA!5(
i 51

WA

~pi
A!qI q~pi

A!

and

Sorg~pB!5(
j 51

WB

~pj
B!qI q~pj

B!. ~25!

Dividing both sides of Eq.~24! by

(
i 51

WA

(
j 51

WB

~pi j
AB!q5S (

i 51

WA

~pi
A!qD S (

j 51

WB

~pj
B!qD ~Þ0!, ~26!

yields
8-3
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Sq
org~pAB!

(
i 51

WA

(
j 51

WB

~pi j
AB!q

5
Sq

org~pA!

(
i 51

WA

~pi
A!q

1
Sq

org~pB!

(
j 51

WB

~pj
B!q

1w~q!
Sq

org~pA!

(
i 51

WA

~pi
A!q

Sq
org~pB!

(
j 51

WB

~pj
B!q

. ~27!

In order to preserve the form of pseudoadditivity betwe
nonextensive entropySq(p) and the corresponding informa
tion contentI q(p), the nonextensive entropy is modified a

Sq
nor~p![

Sq
org~p!

(
j 51

W

pj
q

5

(
i 51

W

pi
qI q~pi !

(
j 51

W

pj
q

, ~28!

which is the expectation value of the information conte
I q(pi) with respect to theescort distribution@24# of p of
order q. Then, by substituting~28! into ~27!, the following
equation with respect toSq

nor(p) is obtained:

Sq
nor~pAB!5Sq

nor~pA!1Sq
nor~pB!1w~q!Sq

nor~pA!Sq
nor~pB!.

~29!

This is the same pseudoadditivity of nonextensive entr
Sq(p) as Eq.~6!. We have thus derived from the expectati
value ofI q(p) the form invariance of the pseudoadditivity o
nonextensive entropy and its information content. Moreov
the nonextensive entropySq

nor(p) defined by Eq.~28! is ac-
tually the q-normalized nonextensive entropy@5,23#. Thus,
according to the principle of the form invariance
pseudoadditivity between nonextensive entropySq(p) and
its information contentI q(p), Sq

nor(p) should be used as non
extensive entropy instead ofSq

org(p). If Eq,p
nor denotes the nor-

malizedq-expectation value with respect to$pi%, defined by

Eq,p
nor@A#[

Eq,p
org@A#

(
j 51

W

pj
q

5

(
i 51

W

pi
qAi

(
j 51

W

pj
q

, ~30!

whereA is a physical quantity, thenq-normalized nonexten
sive entropySq

nor(p) is given by

Sq
nor~p!5Eq,p

nor@ I q~pi !#. ~31!

For the most typical casew(q)5q21, Sq
nor(p) is concretely

given by
06611
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Sq
nor~p!5

12(
i 51

W

pi
q

~q21!(
j 51

W

pj
q

. ~32!

This normalized Tsallis entropy~32! is concave only if the
nonextensivity parameterq lies in (0,1) @3,5#.

Note that definition~20! can be easily replaced with
more general unnormalized expectation value, leading to
most the same conclusion as that derived in this study.
example, if we use a more general form~16! as information
content, then the expectation valueEq,p

g-org defined by Eq.~A4!
can be applied to the definition of the generalized origi
Tsallis entropySq

g-org,

Sq
g-org~p![Eq,p

g-org@ I q~pi !#

5(
i 51

W

pi
w(q)11I q~pi !

5

12(
i 51

W

pi
w(q)11

w~q!
. ~33!

Then, along the same procedure as that presented in
section, the followingSq

g-nor can be obtained in order to pre
serve the form invariance of pseudoadditivity between n
extensive entropy and its information content,

Sq
g-nor~p![

Sq
g-org~p!

(
j 51

W

pj
w(q)11

5

12(
i 51

W

pi
w(q)11

w~q!(
j 51

W

pj
w(q)11

. ~34!

In fact, whenw(q)5q21, the formulas~33! and~34! coin-
cide with Eqs.~21! and ~32!, respectively.

A dissatisfaction of the form invariance of the pseudoa
ditivity in the original Tsallis entropy can be reveale
through the following simple calculation. Here we takek
51 for simplicity. Whenw(q)5q21, and substituting Eq
~16! into Eq. ~20!, Sq

org(p) coincides with the original Tsallis
entropy@1# as shown in Eq.~21!. The original Tsallis entropy
Sq

org(p) given by Eq. ~21! is widely known to satisfy the
following pseudoadditivity@3#:

Sq
org~pAB!5Sq

org~pA!1Sq
org~pB!1~12q!Sq

org~pA!Sq
org~pB!.

~35!

However, the pseudoadditivity~6! of I q(p) for the same con-
dition @i.e., w(q)5q21# is given by

I q~p1p2!5I q~p1!1I q~p2!1~q21!I q~p1!I q~p2!. ~36!

By comparing Eqs.~35! and ~36!, the coefficient (q21) of
the cross term of pseudoadditivity in Eq.~36! differs from
the (12q) in Eq. ~35! whenEq,p

org@•# defined by Eq.~20! is
8-4
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used. This clearly reveals that the form of the pseudoadd
ity of Sq

org(p) andI q(p) is not invariant in the computation o
Eq,p

org@•#. In other words, the form of the pseudoadditivity
not fixed when the unnormalized expectation valueEq,p

org@•#
is applied to the definition of Tsallis entropy.

More generally, for the generalized original Tsallis e
tropy Sq

g-org obtained in Eq.~33!, the following pseudoaddi-
tivity is held:

Sq
g-org~pAB!5Sq

g-org~pA!1Sq
g-org~pB!

2w~q!Sq
g-org~pA!Sq

g-org~pB!. ~37!

By comparing Eqs.~6! and ~37!, a ‘‘w(q) versus2w(q)
inconsistency’’ can be found as similar as the above disc
sion. Note that whenq51, the form invariance discusse
here holds because bothEq,p

org@•# and Eq,p
g-org@•# become nor-

malized expectation values whenq51.
Therefore, the unnormalized expectation value such

Eq,p
org@•# results in an inconsistency in the form invariance

the pseudoadditivity for the original Tsallis entropy.
If we let w(q)5q21, then from Eq.~29! the following

pseudoadditivity holds:

Sq
nor~pAB!5Sq

nor~pA!1Sq
nor~pB!1~q21!Sq

nor~pA!Sq
nor~pB!.

~38!

In other words,Sq
nor(p) given by Eq.~32! satisfies the same

pseudoadditivity~38! as Eq.~36!. Therefore, the form invari-
ance of pseudoadditivity requires the change from the fam
iar identity ~35! to the modified one~38!. This follows
clearly from the above discussion because whenEq,p

org@•#,
defined by Eq.~20!, is applied to the definition ofSq(p), the
form invariance of the pseudoadditivity isnot held as shown
above.

Note that the obtained pseudoadditivity~38! is the same
as the relation of the Jackson basic number:@X1Y#q
5@X#q1@Y#q1(q21)@X#q@Y#q , where @X#q[(qX21)/(q
21) @5#. Consider a quantityf̃ (x)[1/( i(pi)

x. Clearly,
f̃ (1)51.
Shannon entropy S1(p) is expressed as S1(p)
5d f̃(x)/dxux51; normalized Tsallis entropy is given b
Sq

nor(p)5Dqf̃ (x)ux51[@ f̃ (qx)2 f̃ (x)#/(qx2x)ux51, where
Dq is the Jackson differential.

IV. CONCLUSION

We have established a self-consistent principle for
form invariance of the pseudoadditivity of nonextensive e
tropy and its information content. The present principle
drawn from Shannon information theory and leads to
same normalization of the original Tsallis entropy as t
derived in Ref.@5#.

Once a set of an information content and an expecta
value is given, various entropies such as Kullback-Leib
entropy~relative entropy! and mutual entropy can be formu
lated systematically. In nonextensive systems, an informa
content~16! and two expectation values~20! and ~30! are
given in the previous sections. Therefore, we can formu
06611
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two sets of various entropies based on two sets of the in
mation content~16! and the expectation value~20! or ~30!,
respectively. Please see the concrete formulas in Appendi

Note that the alternative selection from the original Tsa
entropy or the normalized Tsallis entropy should be care
in each application. From the mathematical point of view,
normalized Tsallis entropy has nice properties such as
form invariance of the pseudoadditivity, the unified applic
tion of the normalizedq-expectation value, the form invari
ance of the statement of the maximum entropy principle, a
so on. However, from the physical point of view, the origin
Tsallis entropy has many advantages over the normal
version. For example, the results derived from t
Kolmogorov-Sinai entropy using the original Tsallis entro
have the perfect matching with nonlinear dynamical behav
such as the sensitivity to the initial conditions in chaos.
the other hand, the normalized Tsallis entropy does not h
these convenient properties. Please see Refs.@25–28# for the
details.

The principle discussed here is based on the usual for
lation for information in Shannon information theory. Ther
fore, the ideas presented in this paper are an applicatio
information theory to statistical mechanics, similar to t
philosophy of Jaynes’ work@29#. There remain many othe
applications of Shannon information theory to this intere
ing field.

ACKNOWLEDGMENTS

The author would like to thank Professor Yoshino
Uesaka and Professor Makoto Tsukada for their valua
comments and discussions. The author is grateful to Pro
sor Sumiyoshi Abe for reading the first draft and his use
comments.

APPENDIX A: GIBBS INEQUALITY DERIVED
FROM CONVEXITY OF INFORMATION CONTENT

AND APPROPRIATE EXPECTATION VALUE

As presented in Eq.~8!, the Kullback-Leibler entropy is
generally defined by means of the information content,

Kq~pAipB!5Eq,pA@ I q~pi
B!2I q~pi

A!#. ~A1!

Our result~16! implies that

I q~p2!2I q~p1!5p1
2w(q)I qS p2

p1
D . ~A2!

Substituting this relation into Eq.~A1!, the Kullback-Leibler
entropy is

Kq~pAipB!5Eq,pAF ~pi
A!2w(q)I qS pi

B

pi
AD G . ~A3!

If we take an unnormalized expectation value,

Eq,p
g-org@X#[(

i 51

W

pi
w(q)11Xi , ~A4!
8-5
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then

Kq~pAipB!5(
i 51

W

pi
AI qS pi

B

pi
AD . ~A5!

I q(p) is a convex function with respect topP@0,1# for any
qPR1. Thus, we can use Jensen’s inequality@9#: If f is a
convex function andX is a physical quantity~random vari-
able in mathematics!, then

E@ f ~X!#> f ~E@X# !, ~A6!

whereE is the usual expectation value whenq51. There-
fore, Eq.~A5! satisfies

Kq~pAipB!5(
i 51

n

pi
AI qS pi

B

pi
AD

>I qS (
i 51

W

pi
A

pi
B

pi
AD

5I qS (
i 51

W

pi
BD

5I q~1!

50. ~A7!

If we take a normalized expectation value:

Eq,p
g-nor@X#[(

i 51

W pi
w(q)11

(
j 51

n

pj
w(q)11

Xi , ~A8!

then the same Gibbs inequality as Eq.~A7! can be obtained
When w(q)5q21, the expectation values~A4! and ~A8!
coincide withq-expectation valuedefined by Eq.~20! and
normalized q-expectation valuedefined by Eq.~30!, respec-
tively. Thus, if an expectation value is chosen appropriat
for a given information content, then the non-negativity co
dition of the Kullback-Leibler entropy is held.

APPENDIX B: SYSTEMATIC FORMULATIONS
OF VARIOUS NONEXTENSIVE ENTROPIES

The proposed procedure for defining nonextensive
tropy using an information content and an expectation va
is applicable to the systematic formulations of various n
extensive entropies such as Kullback-Leibler entropy~rela-
tive entropy! and mutual entropy in accordance with the fo
mulations in Shannon information theory@9#.

In nonextensive systems, an information content and
expectations are given in Sec. III. Therefore, we can form
late various nonextensive entropies in the following tw
cases: case 1, the information content~16! and the
q-expectation value~20!; case 2, the information content~16!
and the normalizedq-expectation value~30!. In each formu-
lation w(q)5q21 is used as the most typical function
w(q).
06611
y
-

-
e
-

o
-

1. Various nonextensive entropies usingq-expectation value
Eq

org
†"‡

The information content~16! and theq-expectation value
~20! are applied to the definitions of various entropies
follows:

~O-1! ~nonextensive joint entropy!,

Sq
org~pAB![Eq,pAB

org
@ I q~pi j

AB!#5

12(
i 51

WA

(
j 51

WB

~pi j
AB!q

q21
;

~B1!

~O-2! ~nonextensive conditional entropy!,

Sq
org~pBuA![Eq,pA

org FSqS pi*
AB

pi
A D G

5(
i 51

WA

~pi
A!qF 12(

j 51

WB S pi j
AB

pi
A D q

q21
G

5

(
i 51

WA

~pi
A!q2(

i 51

WA

(
j 51

WB

~pi j
AB!q

q21
, ~B2!

where

H pi*
AB

pi
A J 5H pi1

AB

pi
A , . . . ,

piWB

AB

pi
A J for i 51, . . . ,WA ;

~O-3! ~nonextensive Kullback-Leibler entropy!,

Kq
org~pAipB![Eq,pA

org
@ I q~pi

B!2I q~pi
A!#5

12(
i 51

W

pi
BS pi

A

pi
BD q

12q
;

~B3!

~O-4! ~nonextensive mutual entropy!,

I q
org~pA;pB![Kq

org~pABipApB!

5Eq,pAB
org

@ I q~pi
Apj

B!2I q~pi j
AB!#

5

12(
i 51

WA

(
j 51

WB

~pi
Apj

B!S pi j
AB

pi
Apj

BD q

12q
. ~B4!

2. Various nonextensive entropies using normalized
q-expectation valueEq

nor
†"‡

The information content~16! and theq-expectation value
~30! are applied to the definitions of various entropies
follows:
8-6
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~N-1! ~nonextensive joint entropy!,

Sq
nor~pAB![Eq,pAB

nor
@ I q~pi j

AB!#5

12(
i 51

WA

(
j 51

WB

~pi j
AB!q

~q21!(
i 51

WA

(
j 51

WB

~pi j
AB!q

;

~B5!

~N-2! ~nonextensive conditional entropy! ,

Sq
nor~pBtuA![Eq,pA

nor FSqS pi*
AB

pi
A D G

5

(
i 51

WA F ~pi
A!q

12(
s51

WB S pis
AB

pi
A D q

~q21!(
t51

WB S pit
AB

pi
A D qG

(
j 51

WA

~pj
A!q

, ~B6!

where

H pi*
AB

pi
A J 5H pi1

AB

pi
A , . . . ,

piWB

AB

pi
A J for i 51, . . . ,WA ;

~N-3! ~nonextensive Kullback-Leibler entropy!,
Its

r-

y

06611
Kq
nor~pAipB![Eq,pA

nor
@ I q~pi

B!2I q~pi
A!#5

12(
i 51

W

pi
BS pi

A

pi
BD q

~12q!(
j 51

W

~pj
A!q

;

~B7!

~N-4! ~nonextensive mutual entropy!,

I q
nor~pA;pB![Kq

nor~pABipApB!

5Eq,pAB
nor

@ I q~pi
Apj

B!2I q~pi j
AB!#

5

12(
i 51

WA

(
j 51

WB

~pi
Apj

B!S pi j
AB

pi
Apj

BD q

~12q!(
s51

WA

(
t51

WB

~pst
AB!q

. ~B8!

Note that both of the nonextensive mutual entropies,
spectively, defined by Eqs.~B4! and~B8! are clearlysymmet-
ric with respect to ‘‘$pi

A%↔$pj
B% ’’ in each formulation. Fur-

thermore, thenon-negativityof mutual entropies~B4! and
~B8! is directly derived from that of the nonextensiv
Kullback-Leibler entropy, i.e.,

Iq~pA;pB!5Kq~pABipApB!>0 for any qPR1,
~B9!

with equality pi j
AB5pi

Apj
B for any i 51, . . . ,WA and j

51, . . . ,WB .
-
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