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Nonextensive entropies derived from form invariance of pseudoadditivity
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The form invariance of pseudoadditivity is shown to determine the structure of nonextensive entropies.
Nonextensive entropy is defined as the appropriate expectation value of nonextensive information content,
similar to the definition of Shannon entropy. Information content in a nonextensive system is obtained uniquely
from generalized axioms by replacing the usual additivity with pseudoadditivity. The satisfaction of the form
invariance of the pseudoadditivity of nonextensive entropy and its information content is found to require the
normalization of nonextensive entropies. The proposed principle requires the same normalization as that
derived previouslffA.K. Rajagopal and S. Abe, Phys. Rev. Le38, 1711(1999], but is simpler and estab-
lishes a basis for the systematic definition of various entropies in nonextensive systems.
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. INTRODUCTION function defined by Ipx=(x""%—1)/(1—q). However, in Ref.
[10], the form invariance presented in this paper was not
Since the first proposal of nonextensive entropy by Tsallisnentioned. We introduce the axioms for nonextensive infor-
[1,2], there have been many successful studies and applicaation contentq(p) as a slight generalization of that for the
tions analyzing physical systems such as long-range interagtandard information content, and obtalig(p) uniquely
tions, long-time memories, and multifractal structures in thefrom the generalized axioms. The requirement of form in-
nonextensively generalized Boltzmann-Gibbs statistical mevariance of pseudoadditivity when we define nonextensive
chanics[3]. In the rapid progress in this field, some modifi- entropyS,(p) as the appropriate expectation valud gfp),
cations have been made to mathematical formulations in the
generalized statistical mechanics in order to maintain the Sq(P)=Eqpll4(P)], (1)
physical consistency. One of the most important modifica- o
tions was the introduction of an appropriate definition of the!€@ds to the determination of the structure of the nonexten-
generalized expectation value. This modification has alread§'V® €Ntropy, wheré, [ -] is the expectation value satisfy-
appeared in the literatufd], but has been applied as a can- "9 the following form invariance of the pseudoadditivity:
didate for satisfying the physical requirements in a given
situation without a systematic framework. The necessity to
apply such modifications invites the establishment of guiding
principles that will provide a clear basis for proposed gener 4
alizations of Boltzmann-Gibbs statistical mechanics. In a re-
cent papeif5], Rajagopal and Abe presented a principle for Sq(pAB) S,(p")  Sy(pB)
determining the structure of nonextensive entropies. Their K qk + qk +¢(q) K o
principle was the form invariance of the Kullback-Leibler 3)
entropy when generalized to nonextensive situations.

In the present paper, a much simpler principle for deteryherek is a positive constantp(q) is any function of the
mining the structure of nonextensive entropies is prese”te(ﬁonextensivity parametay and satisfies the conditior(d)
The original Tsallis entropy is determined for the given ap-given below.
propriate axiomg6—8]. In contrast to these axiomatic ap- ~ Note that information content means the amount of infor-
proaches, we define nonextensive entropy in another way; ifhation provided by a result of an observation in a physical
terms of the appropriate expectation value of nonextensivgense. The standard information contépttp) = —Inp has

information content similar to the definition for Shannon en-pgen callecsurprise by Watanabd11], and unexpectedness
tropy [9]. This definition has already been applied to thepy Barlow[12).

generalization of the Shannon source coding theorem using
the normalized gexpectation valuef nonextensive informa-
tion contenf10]. Nonextensive information contehy(p) is
defined byl 4(p) = —Ingp in Ref.[10] as an intuitively natu- The axioms of standard information content: [0,1]
ral generalization of the standard information contiertp) —R™ satisfyingl ;(1)=0 are given as followf9]. [S1] |, is
=—Inp (referred to asself-informationor self-entropyin  differentiable with respect to ange(0,1), [S2] |,(p.p2)
Shannon information theof]), where Ip xis ag-logarithm ~ =1,(p;) +1,(p,) for any p;,p,[0,1]. Axiom [S2] means
that the information content for two stochastically indepen-
dent events is given by the sum of the two sets of informa-
*Electronic address: suyari@tj.chiba-u.ac.jp tion.

Iq(plp2) _ Iq(pl) + Iq(pz) Iq(pl) Iq(pz)

Sa(P?) Sq(P®)

II. NONEXTENSIVE INFORMATION-CONTENT
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For the above axioms,(p) is determined uniquely by

l1(p)=—klinp, (4)

wherek is a positive constan9].
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fixed ge R" and its corresponding appropriate expectation
value should be applied. Such examples of expectation value
are g-expectation valuand normalized gexpectation value
[2,4]. Under these two conditiongonvex information con-
tent and appropriate expectation valube non-negativity of

The above axioms are generalized in nonextensive SitUgp e nonextensive Kullback-Leibler can be proved. The proof

tions as follows. Nonextensive
lq: [0,1]—R" for any fixedge R", satisfying

lim 14(p)=11(p)=—kinp, (5
q—1

should have the following propertigsi1] |  is differentiable
with respect to anyp e (0,1) andqe R™, [T2] I4(p) is con-
vex with respect tg €[ 0,1] for any fixedqge R, and[T3]
there exists a functiow: R—R such that

Iq(plpZ) _ Iq( pl) n Iq(pZ) Iq(pl) Iq(p2) (6)
k

K K T e@—

for any p;,p,€[0,1], wherep(q) is differentiable with re-
spect to anyge R™,

de(q)

lim dq

q~>l

#0, lime(q)=¢(1)=0, ¢(q)#0(q#1).
q*)l
(@)

Equation(6) is calledpseudoadditivityn many studie$3]
as a special form ofomposability[13,14].

information content;

is given in Appendix A.

Using the axioms[T1]-{T3], we determine |y(p)
uniquely in the following procedures. Using B&), for any
1+Ae(0,1), we have

lolp(1+A)] Ilq(ptAp)
k a k

1g(p) Ig(1+A) 14(p) 14(1+4)
=k T ey kK

(11)

This can be rewritten as

lo(P+Ap)—lg(p) _ 114(1+A4) k+(q)lg(p)
Ap kA p

. (12

Taking the limitA—0 on both sides of Eq.12), we obtain

dlg(p) _ Bkt e(a)lq(p)
dp Kk P ’

(13

Note that in these generalized axiori§2] is needed to whereg=lim, o_[l4(1+A)/A] and the first axioniT1] is
maintain non-negativity of the Kullback-Leibler entropy for gppjied. The differential equation is given by
any ge R" when generalized to nonextensive situations

[15,16. In general, Kullback-Leibler entropi(p”||p?) is

defined by the appropriate expectation value of the difference

between two information contenf9],

K(pAlp®)=Epall (p2)—1(pM]. (8)

Therefore, the non-negativity of the Kullback-Leibler en-

tropy leads to Gibbs inequalify17,18,

K(p*p®)=0 < S(p")=EpI(pP)]<Epall (p7)]-

When E;, is a normalized expectation valuge., Eg[1]
=1) and pB=(1MW, ..., 1W), the

maximum entropy,

R O

(10

Epa

right-hand side = _ :
Epa[1(p)] of the above Gibbs inequality is equal to the Sive information contentlq(p)

1 g1

= __dy=CZax, 14
kro@y Y~k x 4

wherex=p andy=I4(p). This can be solved analytically;

the rigorous solution is

(CxPye@/k—1
¢(q)

(CpP)e@/k—1

=k , thatis, | =k
Y a(P) ®(q)

(15

where C is a constant. Then, from the initial condition
Iimqﬁllq(p)=ll(p)_=—kln p, we have thatC=1 and B

= —k, where conditiong7) are applied. Thus, the nonexten-
is derived as I4(p)
=k[(p~# @ —1)/e(a)].

Moreover, by[T2], the second differential dfy(p) with
respect top should be non-negative for any fixepe R*.
Thus, we can derive a constraigt(q) +1=0 for any q
eR".

Summarizing these results, the nonextensive information

This inequality coincides with the maximality condition that contentl 4(p) obtained from the axiomgT1]-[T3] is

is one of the Shannon-Khinchin axiori®9,2Q, that is, the

simplest form of the maximum entropy principle without
constraints. Therefore, the satisfaction of the non-negativity

of the Kullback-Leibler entropy for angje R* is needed

when generalized to nonextensive systems. In order to satisfyherek is a positive constant and
the requirement of the non-negativity, the information con-

tentl ,(p) should be convex with respect o= [ 0,1] for any

p7¢(Q)_1
| =K———, 16
qa(P) o(Q) (16)
¢(q)+1=0 forany qeR". (17
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For exampleg(q)=q—1 impliesly(p)=—kIngp. whereW is the total number of microscopic configurations
Note that there have already been remarks on the alternavith probabilities{p;}. In the definition ofEg3 in Eq. (20),
tive candidates for nonextensive information content to dethe q-expectation valug2,4] is used. If we letp(q)=q—1,
fine the original Tsallis entrop{3]. They are thenS{(p) is concretely derived from Eqé16) and(20) as
follows:

10(p)=—klIngp and IP(p)=kingp~t, (19

and they only coincide fog=1. i=1
y only q %)= ——— (21)
q—1
W
1- pil w W This is the original Tsallis entropji].
= . .
SOY p) =k _ a@)p)= 1@ ), Let A andB be two independent systems in the sense that
a (P) -1 &P () 21 Pilg™(P) the probabilitiesp(;® of the total systenA+ B factorize into

(19  those ofA and ofB, i.e.,

AB_ AB P P
19(p) and 1P(p) correspond to ¢Y(q)=g—1 and pij =pip; forany i=1,... Wa and j=1,... ’WB'22
o?(q)=1—q as ¢(q) in Eq. (16), respectively. However, (22)
the latter casep®)(q)=1-q doesnot satisfy the identity e nonextensive entropg(p*®) of the total systemA

is. (2
(17) for any qe R+,’ that is, 157(p) dozes not possess the | g ¢an then be expanded using definitid@s) and (22) as
property ofconvexity[ T2]. Therefore,l£4 )(p) cannotbe in-  foliows:

formation content. Even if{’(p) is applied as information

content, then the non-negativity property of the nonextensive SyUP®) =Eqol14(p*®)]
Kullback-Leibler entropy isiot held for anyqge R™ for lack Wa Wg

of the convexity ofl gz)(p), as stated above. The convexity of _ E 2 (p2B)] (p2B)
information content is applied to Jensen’s inequality in order <ii= Pij ) o Pij

to prove the non-negativity of the nonextensive Kullback-

Leibler entropy. See Appendix A for the details. A_B AR
In case ofp(q)=q—1 andk=1, the pseudoadditivity6) e ]2 PP W q(pipy)- (23

of 14(p) is remarkably similar to the relation of the Jackson

basic number im-deformation theory21,22 as follows. Let  Applying the pseudoadditivity6) for information content

[X]q be the Jackson basic number of a physical quantity 1,(p), we obtain

that is,[X]qE(qX— 1)/(q—1). Then the Jackson basic num-

ber of X+Y satisfies the identity X+ Y],=[X]q+[Y] . AB A B

+(g—1)[X][Y]q. The surprising similaritg to psqeudoaqddi- SaUp™®)= 2«1 121 (PP M o(P) +14(P))

tivity (6) can be seen if we consider a quantifyx)

=p *~1). Clearly, f(1)=1. Standard information content +o(a)lo(PM)14(PP)}

I.(p) is expressed as;(p)=df (x)/dx|,—,; nonextensive

information content is given bylq(p)=Dgf(X)|x-1

=[f(gx) — f(x)1/(qx—X)|x—1, whereD is the Jackson dif-

ferential. According tog-deformation theory, the property A 5

limg_114(p)=11(p) originates from the convergence +¢(q)S(p™)S(p®), (24)

limg_, Dq=d/dx.

\M)E

Wg

(
=1
Wp Wg

Wg

2 (pf‘)q)s(pAH

Wa

;l (pf‘)q)apﬁ*)

where we used

IIl. EFFECTS OF RENORMALIZATION orgy oA Wa Avg A
OF NONEXTENSIVE ENTROPIES S™™(p ):;1 (pi)Mg(Pi)
The normalized nonextensive entropies follow naturally
from the form invariance between entropy and its informa-2"
tion content. In this section we assutke 1 for simplicity. Wp
~ Similar to Shannon entropy, nonextensive entr&q(p) S°YpB)= >, (PP)%4(pP). (25)
is defined as the expectation value of the information content j=1

l4(p) obtained in Eq.(16). For example, the nonextensive ]
entropy S using the unnormalized expectation value Dividing both sides of Eq(24) by
Eqpl-] is given by Wy Wg (va

Wg
2 2 (P9°=( 2 (pf\)q)(; (PP

i=1

(#0), (26

W
sg'%p):ng%[lq(p)]Egl P4 (py), (20) Jields
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S3AP™® SN s%p®)

W, Wg Wy Wg
zﬁnp>q§gww 2ﬁﬁw
i=1j=1 i= j=
Sorg( A) Sorg( pB)
¢(Q) w, :

E(ﬁﬂE(m

(27)
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(32

This normalized Tsallis entrop§82) is concave only if the
nonextensivity parameter lies in (0,1)[3,5].

Note that definition(20) can be easily replaced with a
more general unnormalized expectation value, leading to al-

In order to preserve the form of pseudoadditivity betweemmost the same conclusion as that derived in this study. For

nonextensive entrop$,(p) and the corresponding informa-
tion contentl ;(p), the nonextensive entropy is modified as

, (28)

which is the expectation value of the information content

l4(pi) with respect to theescort distribution[24] of p of
orderg. Then, by substituting28) into (27), the following
equation with respect t8;°(p) is obtained:

S =S%(pM) + S7(p®) + (@) S (P S sz- )
29

This is the same pseudoadditivity of nonextensive entropy
Sq(p) as Eq.(6). We have thus derived from the expectation

value ofl4(p) the form invariance of the pseudoadditivity of

nonextensive entropy and its information content. Moreover,

the nonextensive entrop§,”(p) defined by Eq(28) is ac-
tually the g-normalized nonextensive entrofy,23]. Thus,
according to the principle of the form invariance of
pseudoadditivity between nonextensive entrdpyp) and
its information contenty(p), S;”(p) should be used as non-
extensive entropy instead Sgrg( p). If Eq, denotes the nor-
malizedg-expectation value with respect {p;}, defined by

Eorg[A]
W =

> pf
j=1

EqplAl= , (30)

w

E pIA;
=1
W

2

whereA is a physical quantity, theg-normalized nonexten-
sive entropySy”(p) is given by

Sa(p)=Eqipll4(Pi]- (31

For the most typical casg(q)=q—1, S;°(p) is concretely
given by

example, if we use a more general fo(6) as information
content, then the expectation valg ;" defined by Eq(A4)

can be applied to the definition of the generalized original
Tsallis entropyS;°,

org( p) Eg org{ I

= pf @y (py)

i=1

(pi)]

=

w

_Ep

i&ﬁ(Q)Jrl

®(q) 33

Then, along the same procedure as that presented in this
section, the followingS{™*" can be obtained in order to pre-

serve the form invariance of pseudoadditivity between non-
extensive entropy and its information content,

W
o 1-2 pfl@*t
SAR) =

nor(

(34)

w
E p‘P(q)+l (P(q 2 ‘P(q)+1

i=

P)=-

In fact, whene(q) =q—1, the formulag33) and (34) coin-
cide with Egs.(21) and (32), respectively.

A dissatisfaction of the form invariance of the pseudoad-
ditivity in the original Tsallis entropy can be revealed
through the following simple calculation. Here we take
=1 for simplicity. Whene(q)=q—1, and substituting Eqg.
(16) into Eq.(20), S3(p) coincides with the original Tsallis
entropy[1] as shown in Eq(21). The original Tsallis entropy
Sa(p) given by Eq.(21) is widely known to satisfy the
following pseudoadditivity 3]:

S3%p"%) =S4 p™) + SUp®) + (1— ) Sy p™ S pB)(. |
35

However, the pseudoadditivit) of I ,(p) for the same con-
dition [i.e., ¢(q)=q—1] is given by

lq(P1)+1g(P2) +(a=D)lg(p0)Ig(P2)-

By comparing Eqgs(35) and (36), the coefficient — 1) of
the cross term of pseudoadditivity in E@6) differs from
the (1-q) in Eq. (35 whenEgJ[ -] defined by Eq(20) is

l4(P1P2) = (36)
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used. This clearly reveals that the form of the pseudoadditivtwo sets of various entropies based on two sets of the infor-
ity of S;'Y(p) andl 4(p) is notinvariant in the computation of mation conten(16) and the expectation valu@0) or (30),
ng%[~]. In other words, the form of the pseudoadditivity is respectively. Please see the concrete formulas in Appendix B.
not fixed when the unnormalized expectation VaE@%[ ] Note that the alternative Se|6(?ti0n from the Original Tsallis
is applied to the definition of Tsallis entropy. ’ entropy or the normalized Tsallis entropy should be careful
More generally, for the generalized original Tsallis en-in €ach application. From the mathematical point of view, the
tropy Sg-org obtained in Eq(33), the following pseudoaddi- normalized Tsallis entropy has nice properties such as the

tivity is held: form invariance of the pseudoadditivity, the unified applica-
' tion of the normalized}-expectation value, the form invari-
33'0’9( pAB):sg'Ofg( p™) + sg'O'Q( p®) ance of the statement of the m_aximur_n entropy principl_e! and
so on. However, from the physical point of view, the original
— (@) ST ST p®). (387  Tsallis entropy has many advantages over the normalized

. version. For example, the results derived from the
By comparing Egs(6) and (37), a “¢(q) versus—¢(q)  Kolmogorov-Sinai entropy using the original Tsallis entropy
inconsistency” can be found as similar as the above discusyaye the perfect matching with nonlinear dynamical behavior
sion. Note that wherg=1, the form invariance discussed gych as the sensitivity to the initial conditions in chaos. On
here holds because boBfJ[ -] andEG ] -] become nor-  the other hand, the normalized Tsallis entropy does not have
malized expectation values whepr1. these convenient properties. Please see [Refs-29 for the
Therefore, the unnormalized expectation value such agetails.

Eq'pl -] results in an inconsistency in the form invariance of ~ The principle discussed here is based on the usual formu-

the pseudoadditivity for the original Tsallis entropy. lation for information in Shannon information theory. There-
If we let ¢(q)=qg—1, then from Eq.(29) the following fore, the ideas presented in this paper are an application of
pseudoadditivity holds: information theory to statistical mechanics, similar to the
philosophy of Jaynes’ work29]. There remain many other
S (p"8) =S (p") +S57(p®) + (9 — 1) S (pA) S (p®). applications of Shannon information theory to this interest-
B8  ing field.
In other words Si”(p) given by Eq.(32) satisfies the same
pseudoadditivit(38) as Eq.(36). Therefore, the form invari- ACKNOWLEDGMENTS

ance of pseudoadditivity requires the change from the famil- The author would like to thank Professor Yoshinori
iar identity (35 to the modified one(38). This follows  yesaka and Professor Makoto Tsukada for their valuable
clearly from the above discussion because WEZfJ[-],  comments and discussions. The author is grateful to Profes-

defined by Eq(20), is applied to the definition o&,(p), the  sor Sumiyoshi Abe for reading the first draft and his useful
form invariance of the pseudoadditivity i®t held as shown comments.

above.
Note that the obtained pseudoadditivi8) is the same APPENDIX A: GIBBS INEQUALITY DERIVED
as the relation of the Jackson basic numbexX+ Y], FROM CONVEXITY OF INFORMATION CONTENT
— — (X
=[X]q*+[Ylg+(q=1)[X][Y]q, Where[X]q=(q"—1)/(q AND APPROPRIATE EXPECTATION VALUE
—1) [5]. Consider a quantityf(x)=1/Z,(p;)*. Clearly, _ _ _
F(1)=1 As presented in Eq@8), the Kullback-Leibler entropy is

Shannon entropy Sy(p) is expressed as Sy(p) generally defined by means of the information content,

=d~f(x)/dx|x=l; normalized Tsallis entropy is given by Kq(pAIIpB)=Eq pA[|q(piB)—|q(piA)]- (A1)
S5 (P)=Dgf () [x=1=[F(a¥) = F(x)]/(ax—X)|x=1, where
Dy is the Jackson differential. Our result(16) implies that

IV. CONCLUSION l4(p2)—1q(P1) =Py * @I q(%)_ (A2)

We have established a self-consistent principle for the
form Invarniance of the.pseudoadd|t|V|ty of nonextensive en-gypstituting this relation into EGA1), the Kullback-Leibler
tropy and its information content. The present principle iSentropy is
drawn from Shannon information theory and leads to the

same normalization of the original Tsallis entropy as that piB

derived in Ref[5]. Kq(PMp®)=Eq pa (p{*)ﬂqnq(—A : (A3)
Once a set of an information content and an expectation P

value is given, various entropies such as Kullback—LeibIerIf tak lized tati |

entropy(relative entropy and mutual entropy can be formu- We take an unnormaiized expectation vaiue,

lated systematically. In nonextensive systems, an information W

cpntent(lG) and MO expgctatlon value®0) and (30) are Eg:grg{x]z 2 picp(q)+1xi’ (A4)

given in the previous sections. Therefore, we can formulate i=1

066118-5
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then 1. Various nonextensive entropies using|-expectation value
Eorg[.]
q

Pi The information contenfl6) and theg-expectation value

B
e

Kq(pApB) = E p q(

) ) ) follows:
l4(p) is a convex function with respect < [0,1] for any

geR". Thus, we can use Jensen’s inequal@: If f is a
convex function an is a physical quantitfyrandom vari-

(O-1) (nonextensive joint entropy

able in mathematigsthen L Wa Ws (B0
T4 Pij
i=1j=1
E[f(X)]=T(E[X]), (AB6) Sgrg(pAB) org B[Iq(p” )]_ =1 ;
whereE is the usual expectation value wher=1. There- (B1)
fore, Eq.(A5) satisfies
(O-2) (nonextensive conditional entropy
Pi
Ka(pAIp®) = 2 pi (—A) ple
y Pi Sgrg(pBA)EnggA[ Sq(?)
B i
qu(z p{_\p_iA> Wg phB) d
i=1 P W, 1— z pIJ )
w _ A q i
—IQ(E piB) igl(pl) q-1
- Wp Wg
=lq(1) E (PHI-2 2 (P}
= (A7) ) (B2)
q— 1
If we take a normalized expectation value:
where
<P(Q)+1
Egp [X]= 2 X, (A8) AB AB phB
z e(q)+1 pi* _ pil iWg f i=1 W,
p p—f\—p—(_\,,p/_\ or 1=1,... Wy,
I
then the same Gibbs inequality as E47) can be obtained. 0-3 tensive Kullback-Leibl ¢
When ¢(q)=q—1, the expectation value4) and (A8) (0-3) (nonextensive Kullback-Leibler entropy
coincide with g-expectation valuelefined by Eq.(20) and W Al g
normalized g-expectation valwefined by Eq(30), respec- 1— E pB Pi
tively. Thus, if an expectation value is chosen appropriately p,B
. ; ; . org; Al By — F0rd .
for a given information content, then the non-negativity con- Kq “(PAIP®)=Eqpallq(PP) —14(p{)]1= 1-q ;
dition of the Kullback-Leibler entropy is held.
(B3)
APPENDIX B: SYSTEMATIC FORMULATIONS (O-4) (nonextensive mutual entropy
OF VARIOUS NONEXTENSIVE ENTROPIES
The proposed procedure for defining nonextensive en- Zgrg(pA;pB)EKorg(pABHpApB)
tropy using an information content and an expectation value EY, ol 1 o( AB) 1
is applicable to the systematic formulations of various non- a,pABLTa p, pJ a(Pij
extensive entropies such as Kullback-Leibler entromfa- Wa Wg p
tive entropy and mutual entropy in accordance with the for- 1— E 2 (pIA ( A" )
mulations in Shannon information thed§]. _ PPy (B4)

In nonextensive systems, an information content and two
expectations are given in Sec. lll. Therefore, we can formu-
late various nonextensive entropies in the following two

1-q

(20) are applied to the definitions of various entropies as

cases: case 1, the information conte(6) and the
g-expectation valué20); case 2, the information conte(it6)
and the normalized-expectation valug30). In each formu-

lation ¢(q)=qg—1 is used as the most typical function of (30) are applied to the definitions of various entropies as
follows:

®(9).
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(N-1) (nonextensive joint entropy

Wp Wg
1-2 2 (P
i=1j=
PP =Eq el 4P 1= 5w ;
(q- 1)2l > (p®
i=1j=1
(BS)
(N-2) (nonextensive conditional entropy
Py
Snor(th|A) EgogA S I_:)
P;
Wg AB\ q
1_2 Tis
- =1 ( p-“)
> | (pye |
t i Wg pAB q
it
g %]
= i
- i (B6)
> (ppe
j=1
where
{pﬁf‘] pie P, or el w
— =)= ... or i=1,...Whx;
P p pi A

(N-3) (nonextensive Kullback-Leibler entropy
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w A q
nor, ~A gnor A ':1 pl
Ka(pA1p®)=Eqpall o(pP) — I 4(P] )]—T;
(1—q)21 (pfH)®
J:
(B7)
(N-4) (nonextensive mutual entropy
%" p®) =K (p"®]p"p®)
=Eqpnellq(P{'P7) — 14(Pf®)]
Wa Wpg
A plj
B pa)
i=1j=1 P; pj
= Wi g . (BY

(1-q) > > (pad)e
s=1t=1

Note that both of the nonextensive mutual entropies, re-
spectively, defined by EqéB4) and(B8) are clearlysymmet-
ric with respect to ‘{piA}H{ij}” in each formulation. Fur-
thermore, thenon-negativityof mutual entropiegB4) and
(B8) is directly derived from that of the nonextensive
Kullback-Leibler entropy, i.e.,

Zy(p" p®) =K4(p*®p*p®)=0 forany qeR", .

with equality pIJ —pI pJ for any i=1,... W, and j

=1,... Wz.
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